

Lab manual for

Digital Signal Processing Lab

IV B. Tech I Semester

Prepared by

J. Sunil Kumar

&

P. Saritha

Department of Electronics & Communication Engineering

Turbomachinery Institute of Technology & Sciences

(Approved by AICTE & Affiliated to JNTUH)

Indresam(v), Patancheru(M), Medak(Dist). Pin: 502 319

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

Turbomachinery Institute of Technology & Sciences

Certificate

This is to certify that Mr. / Ms. ………………………………….. RollNo……………..… of I/II/III/IV

B.Tech I / II Semester of …………….……………………..…………branch has completed the laboratory work

satisfactorily in …………………..…….……..... Lab for the academic year 20 … to 20 …as prescribed in the

curriculum.

Place: …………….….

Date: ……………..….

Lab In charge Head of the Department Principal

.

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

LIST OF EXPERIMENTS:

1. To study the architecture of DSP chips – TMS 320 6713.32-bit floating point processor.

2. Introduction to MATLAB: generation of basic signals

3. To verify linear convolution

4. To verify the circular convolution

5. To design FIR filter (LP/HP) using windowing technique a. Using rectangular window

b. Using triangular window c. Using Kaiser window

6. To implement IIR filter (LP/HP) & frequency response of analog LP/HP and butter worth

filters & cheby shev filters.

7. N-point FFT algorithm

8. MATLAB program to generate sum of sinusoidal signals

9. To compute power density spectrum of a sequence

10. To find the FFT of given 1-D signal and plot.

EXPERIMENTS OTHER THAN JNTU SYLLABUS:

11. Auto correlation and cross correlation of given sequences.

12. Impulse response.

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

Feature Use

Fast-Multiply accumulate Most DSP algorithms, including filtering,

transforms, etc. are multiplication- intensive

Multiple – access

memory

architecture

Many data-intensive DSP operations require reading a

program instruction and multiple data items during each

instruction cycle for best performance

Specialized addressing modes Efficient handling of data arrays and first-in, first-out

buffers in memory

Specialized program control Efficient control of loops for many iterative DSP

algorithms. Fast interrupt handling for frequent I/O

operations.

On-chip peripherals and I/O

interfaces

On-chip peripherals like A/D converters allow for small

low cost system designs. Similarly I/O interfaces tailored

for common peripherals allow clean interfaces to off-chip

I/O devices.

1. INTRODUCTION TO DSP PROCESSORS

A signal can be defined as a function that conveys information, generally about the state or

behavior of a physical system. There are two basic types of signals viz Analog (continuous time

signals which are defined along a continuum of times) and Digital (discrete-time).

Remarkably, under reasonable constraints, a continuous time signal can be adequately

represented by samples, obtaining discrete time signals. Thus digital signal processing is an ideal

choice for anyone who needs the performance advantage of digital manipulation along with today’s

analog reality.

Hence a processor which is designed to perform the special operations(digital manipulations) on

the digital signal within very less time can be called as a Digital signal processor. The difference

between a DSP processor, conventional microprocessor and a microcontroller are listed below.

Microprocessor or General Purpose Processor such as Intel xx86 or Motorola 680xx family

Contains - only CPU

-No RAM

-No ROM

-No I/O ports

-No Timer

Microcontroller such as 8051 family

Contains - CPU

- RAM

- ROM

-I/O ports

- Timer &

- Interrupt circuitry

Some Micro Controllers also contain A/D, D/A and Flash Memory

DSP Processors such as Texas instruments and Analog Devices

Contains

- CPU - RAM - ROM - I/O ports - Timer

Optimized for

- Fast

arithmetic

- Extended

precision

- Dual operand

fetch

- Zero

overhead loop

- Circular

buffering

The basic features of a DSP Processor are

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

ARCHITECTURE OF 6713 DSP PROCESSOR

This chapter provides an overview of the architectural structure of the TMS320C67xx

DSP, which comprises the central processing unit (CPU), memory, and on-chip

peripherals. The C67xE DSPs use an advanced modified Harvard architecture that

maximizes processing power with eight buses. Separate program and data spaces allow

simultaneous access to program instructions and data, providing a high degree of

parallelism. For example, three reads and one write can be performed in a single cycle.

Instructions with parallel store and application-specific instructions fully utilize this

architecture. In addition, data can be transferred between data and program spaces. Such Parallelism

supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be

performed in a single machine cycle. Also, the C67xx DSP includes the control mechanisms to

manage interrupts, repeated operations, and function calling.

Fig 2 – 1 BLOCK DIAGRAM OF TMS 320VC 6713

Bus Structure

The C67xx DSP architecture is built around eight major 16-bit buses (four program/data buses and

four address buses):

_ The program bus (PB) carries the instruction code and immediate operands from program

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

memory.

_ Three data buses (CB, DB, and EB) interconnect to various elements, such as the CPU, data

address generation logic, program address generation logic, on-chip peripherals, and data memory.

_ The CB and DB carry the operands that are read from data memory.

_ The EB carries the data to be written to memory.

_ Four address buses (PAB, CAB, DAB, and EAB) carry the addresses needed for instruction

execution.

The C67xx DSP can generate up to two data-memory addresses per cycle using the two auxiliary

register arithmetic units (ARAU0 and ARAU1). The PB can carry data operands stored in

program space (for instance, a coefficient table) to the multiplier and adder for

multiply/accumulate operations or to a destination in data space for data move instructions

(MVPD and READA). This capability, in conjunction with the feature of dual-operand read,

supports the execution of single-cycle, 3-operand instructions such as the FIRS instruction. The

C67xx DSP also has an on-chip bidirectional bus for accessing on-chip peripherals. This bus is

connected to DB and EB through the bus exchanger in the CPU interface. Accesses that use this

bus can require two or more cycles for reads and writes, depending on the peripheral’s structure.

Central Processing Unit (CPU)

The CPU is common to all C67xE devices. The C67x CPU contains:

_ 40-bit arithmetic logic unit (ALU)

_ Two 40-bit accumulators

_ Barrel shifter

_ 17 × 17-bit multiplier

_ 40-bit adder

_ Compare, select, and store unit (CSSU)

_ Data address generation unit

_ Program address generation unit

Arithmetic Logic Unit (ALU)

The C67x DSP performs 2s-complement arithmetic with a 40-bit arithmetic logic unit (ALU) and

two 40-bit accumulators (accumulators A and B). The ALU can also perform Boolean operations.

The ALU uses these inputs:

_ 16-bit immediate value

_ 16-bit word from data memory

_ 16-bit value in the temporary register,

_ Two 16-bit words from data memory

_ 32-bit word from data memory

_ 40-bit word from either accumulator

The ALU can also function as two 16-bit ALUs and perform two 16-bit operations

simultaneously.

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

Fig 2 – 2 ALU UNIT

Accumulators

Accumulators A and B store the output from the ALU or the multiplier/adder block. They can also

provide a second input to the ALU; accumulator A can be an input to the multiplier/adder.

Each accumulator is divided into three parts:

 Guard bits (bits 39–32)

 High-order word (bits 31–16)

 Low-order word (bits 15–0)

Instructions are provided for storing the guard bits, for storing the high- and the low- order

accumulator words in data memory, and for transferring 32-bit accumulator words in or out of

data memory. Also, either of the accumulators can be used as temporary storage for the other.

Barrel Shifter

The C67x DSP barrel shifter has a 40-bit input connected to the accumulators or to data memory

(using CB or DB), and a 40-bit output connected to the ALU or to data memory (using EB). The

barrel shifter can produce a left shift of 0 to 31 bits and a right shift of 0 to 16 bits on the input

data. The shift requirements are defined in the shift count field of the instruction, the shift count

field (ASM) of status register ST1, or in temporary register T (when it is designated as a shift

count register).The barrel shifter and the exponent encoder normalize the values in an accumulator

in a single cycle. The LSBs of the output are filled with 0s, and the MSBs can be either zero filled

or sign extended, depending on the state of the sign-extension mode bit (SXM) in ST1.

Additional shift capabilities enable the processor to perform numerical scaling, bit extraction,

extended arithmetic, and overflow prevention operations.

Multiplier/Adder Unit

The multiplier/adder unit performs 17 _ 17-bit 2s-complement multiplication with a 40- bit

addition in a single instruction cycle. The multiplier/adder block consists of several elements: a

multiplier, an adder, signed/unsigned input control logic, fractional control logic, a zero detector, a

rounder (2s complement), overflow/saturation logic, and a 16-bit temporary storage register (T).

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

The multiplier has two inputs: one input is selected from T, a data-memory operand, or

accumulator A; the other is selected from program memory, data memory, accumulator A,

or an immediate value. The fast, on-chip multiplier allows the C54x DSP to perform

operations efficiently such as convolution, correlation, and filtering. In addition, the

multiplier and ALU together execute multiply/accumulate (MAC) computations and ALU

operations in parallel in a single instruction cycle. This function is used in determining the

Euclidian distance and in implementing symmetrical and LMS filters, which are required for

complex DSP algorithms. See section 4.5, Multiplier/Adder Unit, on page 4-19, for more details

about the multiplier/adder unit.

Fig 2 – 3 MULTIPLIER/ADDER UNIT

These are the some of the important parts of the processor and you are instructed to go

through the detailed architecture once which helps you in developing the optimized code

for the required application.

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

2. VERIFY LINEAR CONVOLUTION

LINEAR CONVOLUTION USING CCS

AIM: To perform linear convolution of two sequences

EQUIPMENT REQUIRED:

Operating System – Windows XP

Constructor - Simulator

Software - CCStudio 3.3 & MATLAB 7.5

THEORY:

Convolution is a formal mathematical operation, just as multiplication, addition, and integration. Addition

takes two numbers and produces a third number, while convolution takes two signals and produces a

third signal. Convolution is used in the mathematics of many fields, such as probability and statistics.

In linear systems, convolution is used to describe the relationship between three signals of interest: the

input signal, the impulse response, and the output signal.

In this equation, x1(k), x2(n-k) and y(n) represent the input to and output from the system at time n. Here

we could see that one of the input is shifted in time by a value every time it is multiplied with the other

input signal. Linear Convolution is quite often used as a method of implementing filters of various types.

PROCEDURE:

1) Generate the first input sequence ‘x’.

2) Plot the sequence in discrete form. [Make use of stem()]

3) Give some relevant names to x-axis and y-axis.

4) Generate second input sequence ‘y’.

5) Repeat steps (2) and (3) for second sequence ‘y’.

6) Use the inbuilt function ‘conv()’ to compute linear convolution of ‘x’ and ‘y’.

z = conv(x,y)

7) Plot the output sequence ‘z’. [Repeat steps 2 and 3]

8) Make use of subplot () to plot the inputs and output sequences in a single window.

PROGRAM:
// Linear convolution program in c language using CCStudio

#include<stdio.h>

int x[15],h[15],y[15];

main()

{

int i,j,m,n;

printf("\n enter value for m");

scanf("%d",&m);

printf("\n enter value for n");

scanf("%d",&n);

printf("Enter values for i/p x(n):\n");

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

for(i=0;i<m;i++)

scanf("%d",&x[i]);

printf("Enter Values for i/p h(n) \n");

for(i=0;i<n; i++)

scanf("%d",&h[i]);

// padding of zeros

for(i=m;i<=m+n-1;i++) x[i]=0;

for(i=n;i<=m+n-1;i++)

h[i]=0;

/* convolution operation */

for(i=0;i<m+n-1;i++)

{

y[i]=0;

for(j=0;j<=i;j++)

{

y[i]=y[i]+(x[j]*h[i-j]);

}

}

//displaying the o/p

for(i=0;i<m+n-1;i++)

printf("\n The Value of output y[%d]=%d",i,y[i]);

}

Result:

Enter value for m 4

Enter value for n 4

Enter values for i/p 1 2 3 4

Enter Values for n 1 2 3 4

The Value of output y[0]=1

The Value of output y[1]=4

The Value of output y[2]=10

The Value of output y[3]=20

The Value of output y[4]=25

The Value of output y[5]=24

The Value of output y[6]=16

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

Result: linear convolution of two sequences using CCStudio 3.3 is obtained.

Viva Questions:

1. What is the purpose of using convolution?

2. Give the formula for calculating linear convolution.

Exercise Questions:

1. Write a program to find Discrete Fourier Transform of any Two Sequences

2. Write a program to find Inverse Discrete Fourier Transform of any Two Sequences

3. Write a program to find FFT of a signal

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

3. VERIFY CIRCULAR CONVOLUTION.

Aim: To perform circular convolution of two sequences using MATLAB & Code Composer

Studio3.1.

Operating System – Windows XP Constructor

 - Simulator

Software - CCStudio 3.3 & MATLAB 7.5

THEORY

Circular convolution is another way of finding the convolution sum of two input signals. It resembles the

linear convolution, except that the sample values of one of the input signals is folded and right shifted

before the convolution sum is found. Also note that circular convolution could also be found by taking the

DFT of the two input signals and finding the product of the two frequency domain signals. The Inverse DFT of

the product would give the output of the signal in the time domain which is the circular convolution output.

The two input signals could have been of varying sample lengths. But we take the DFT of higher point, which

ever signals levels to. For eg. If one of the signal is of length 256 and the other spans 51 samples, then we

could only take

256 point DFT. So the output of IDFT would be containing 256 samples instead of 306 samples, which

follows N1+N2 – 1 where N1 & N2 are the lengths 256 and 51 respectively of the two inputs. Thus the

output which should have been 306 samples long is fitted into 256 samples. The

256 points end up being a distorted version of the correct signal. This process is called circular convolution.

PROCEDURE:

1. Generate the first input sequence ‘x’.

2. Plot the sequence in discrete form. [Make use of stem()]

3. Give some relavent names to x-axis and y-axis.

4. Generate second input sequence ‘h’.

5. Repeat steps (2) and (3) for second sequence ‘h’.

6. Find out the length of first sequence and store it in variable ‘n1’. [Make use of length ()]

7. Similarly find out the length of second sequence and store it in variable ‘n2’.

8. Find out the maximum length sequence among ‘x’ and ‘h’. Let the length of larger sequence be ‘n3’.

 [Make use of max() function for this purpose]

9. Make the length of smaller sequence equal to the larger sequence by padding zeros to it.

10. Perform circular convolution of the sequences ‘x’ and ‘h’ and store it in ‘y’.Circular convolution of ‘x’

and ‘h’ is given by the following equation:
y(n)= ∑ x(i) h(j) where n=0 to (n3-1)

n=0 j=(n-i)n3

 But in MATLAB x(0) doesn’t exist. So ‘i’ takes values from 1 to n3. Similarly for ’n’.

Therefore the above equation becomes;

y(n)= ∑ x(i) h(j) where, n=1 to n3 n=1

 j=(n-i+1)n3

11. Display and plot the convolved sequence. [Repeat steps (2) and (3)]

12. Make use of subplot to plot the inputs and output sequences in a single window.

13. Compare theoretical and practical values.

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

PROGRAM USING CODE COMPOSER STUDIO 3.3

/* program to implement circular convolution */

#include<stdio.h>

int m,n,x[30],h[30],y[30],i,j, k,x2[30],a[30];

void main()

{

printf(" Enter the length of the first sequence\n");

scanf("%d",&m);

printf(" Enter the length of the second sequence\n");

scanf("%d",&n);

printf(" Enter the first sequence\n");

for(i=0;i<m;i++)

scanf("%d",&x[i]);

printf(" Enter the second sequence\n");

for(j=0;j<n;j++)

scanf("%d",&h[j]);

if(m-n!=0) /*If length of both sequences are not equal*/

{

if(m>n) /* Pad the smaller sequence with zero*/

{

for(i=n;i<m;i++)

h[i]=0;

n=m;

}

for(i=m;i<n;i++)

x[i]=0;

m=n;

}

y[0]=0;

a[0]=h[0];

for(j=1;j<n;j++) /*folding h(n) to h(-n)*/

a[j]=h[n-j];

/*Circular convolution*/

for(i=0;i<n;i++)

y[0]+=x[i]*a[i];

for(k=1;k<n;k++)

{

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

y[k]=0;

/*circular shift*/

for(j=1;j<n;j++)

x2[j]=a[j-1];

x2[0]=a[n-1];

for(i=0;i<n;i++)

{

a[i]=x2[i];

y[k]+=x[i]*x2[i];

}

} /*displaying the result*/

printf(" The circular convolution is\n");

for(i=0;i<n;i++)

printf("%d \t",y[i]);

}

OUTPUT:-

Enter the length of the first sequence 4

Enter the length of the second sequence 3

Enter the first sequence 1 2 3 4

Enter the second sequence 1 2 3

The circular convolution is 18 16 10 16

MODEL GRAPH:-

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

RESULT: Circular Convolution of two sequences using CC Studio3.3 is obtained.

VIVA QUESTIONS:

1. What is the different between Circular and Linear convolution?

2. What is the function in MATLAB used for padding zeros to a sequence? If your sequence is,

x = [1 2 3 4] and you want to pad zeros to it. How can you do that in MATLAB?

3. What is the use of following functions in MATLAB:

i. length()

ii. max()

iii. min()

4. Give the steps to get the result of linear convolution from the method of circular

convolution

5. What is the circular convolution

6. Explain how cyclic (circular) convolution of two periodic sequences can be obtained

using DFT techniques

EXERCISE QUESTIONS:

1. Write a program to sampling

2. Write a program to Up sampling & Down sampling

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

4. DESIGN FIR FILTER (LP/HP) USING WINDOWING TECHNIQUE

FIR FILTERS (LP/HP) USING WINDOWING TECHNIQUE

a) Using Rectangular Window b) Using Bartlett Window c) Using Kaiser Window

AIM: To design of FIR(LP/HP) filters using rectangular window.

EQUIPMENT REQUIRED:

Operating System – Windows XP Constructor

 - Simulator

Software - CCStudio 3 & MATLAB 7.5

THEORY:

A Finite Impulse Response (FIR) filter is a discrete linear time-invariant system whose output is

based on the weighted summation of a finite number of past inputs. An FIR transversal filter

structure can be obtained directly from the equation for discrete-time convolution.

In this equation, x(k) and y(n) represent the input to and output from the filter at time n. h(n-k) is

the transversal filter coefficients at time n. These coefficients are generated by using FDS (Filter

Design Software or Digital filter design package).

FIR – filter is a finite impulse response filter. Order of the filter should be specified. Infinite

response is truncated to get finite impulse response. placing a window of finite length does this.

Types of windows available are Rectangular, Barlett, Hamming, Hanning, Blackmann window etc.

This FIR filter is an all zero filter.

PROCEDURE:

1. Enter the passband ripple (rp) and stopband ripple (rs).

2. Enter the passband frequency (fp) and stopband frequency (fs).

3. Enter the sampling frequency (f).

4. Calculate the analog passband edge frequency (wp) and stop band edge frequency (ws)

wp=2*fp/f ws=2*fs/f

5. Calculate the order of the filter using the following formula,

(-20log10 (rp.rs) –13)

n=
(14.6 (fs-fp)/f).

[Use ‘ceil()’ for rounding off the value of ‘n’ to the nearest integer] if ‘n’ is an

odd number, then reduce its value by ‘1’.
6. Generate (n+1)th point window coefficients.For example boxcar(n+1) generates a rectangular

window. y=boxcar(n+1)

7. Design an nth order FIR filter using the previously generated (n+1) length window function.

b=fir1(n,wp,y)
8. Find the frequency response of the filter by using ‘freqz()’ function. [h,o]=freqz(b,a,k) This

function returns k-point complex frequency response vector ‘h’ and k-point frequency vector ‘o’ in
radians/samples of the filter.

H(e
iw

)= B(e
jw

) = b(1)+b(2)e
-jw

+…………..b(m+1)e
-jmw

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

 A(e
jw

) a(1)+a(2)e
-jw

+………….a(n+1)e
-jnw

Where a, b are vectors containing the denominator and numerator coefficients.

Here a=1.
9. Calculate the magnitude of the frequency response in decibels (dB). m= 20*log10(abs(h))

10. Plot the magnitude response [magnitude in dB Vs normalized frequency (o/pi)]

11. Give relevant names to x- and y- axes and give an appropriate title for the plot.

12. Repeat the procedure for high pass, band pass, and band stop filters.

13. Plot all the responses in a single figure window.[Make use of Subplot].

14. Repeat the program for different types of windows available:

 a. Rectangular window b. Triangular window c. Kaiser window

PROGRAM USING CODE COMPOSER STUDIO 3.3:

#include<stdio.h>

#include<math.h>

#define pi 3.1415 int n,N,c;

float wr[64],wt[64];

void main()
{

printf("\n enter no. of samples,N= :");
scanf("%d",&N);

printf("\n enter choice of window function\n 1.rect \n 2. triang \n c= :");

scanf("%d",&c);
printf("\n elements of window function are:");

switch(c)

{

case 1:
for(n=0;n<=N-1;n++)

{
wr[n]=1;

printf(" \n wr[%d]=%f",n,wr[n]);
}

break;

case 2:

for(n=0;n<=N-1;n++)
{

wt[n]=1-(2*(float)n/(N-1));
printf("\n wt[%d]=%f",n,wt[n]);

}
break;

}

}

RESULT: By using windowing techniques (Bartlett, Rectangular, Blackman) the filters are designed

VIVA QUESTIONS:

1. What are the uses of function ceil and for?
2. Define boxcar

3. Define Kaiser

4. Define Bartlett

5. What is an FIR system? Compare FIR and IIR system?

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

5. IMPLEMENT IIR FILTER (LOW PASS & HIGH PASS)

IIR FILTER (LP/HP) USING BUTTER WORTH (ANLOG & DIGITAL) FILTERS &

CHEBYSHEV (DIGITAL) TYPE – I & II FILTERS

AIM: To design of Butterworth Digital (low pass & high pass) filter.

EQUIPMENTS:

Operating System – Windows XP Constructor

 - Simulator

Software - CCStudio 3 & MATLAB 7.5

THEORY:

The IIR filter can realize both the poles and zeroes of a system because it has a rational transfer

function, described by polynomials in z in both the numerator and the denominator:

Eq.2

The difference equation for such a system is described by the following:

Eq .3

M and N are order of the two polynomials bk and ak are the filter coefficients. These filter

coefficients are generated using FDS (Filter Design software or Digital Filter design package).

IIR filters can be expanded as infinite impulse response filters. In designing IIR filters, cutoff
frequencies of the filters should be mentioned. The order of the filter can be estimated using butter
worth polynomial. That’s why the filters are named as butter worth filters. Filter coefficients can be
found and the response can be plotted.

PROCEDURE:

1. Enter the pass band ripple (rp) and stop band ripple (rs).

2. Enter the pass band frequency (fp) and stop band frequency (fs).

3. Get the sampling frequency (f).

4. Calculate the analog pass band edge frequencies, w1 and w2.

w1 = 2*fp/f w2 = 2*fs/f

5. Calculate the order and 3dB cutoff frequency of the analog filter. [Make use of the following

function] [n,wn]=buttord(w1,w2,rp,rs,’s’)

6. Design an nth order analog lowpass Butter worth filter using the following

statement.

[b,a]=butter(n,wn,’s’)

7. Find the complex frequency response of the filter by using ‘freqs()’

function

[h,om]=freqs(b,a,w)

where, w = 0:.01:pi

This function returns complex frequency response vector ‘h’ and frequency vector

‘om’ in radians/samples of the filter.

b(s) b(1)S
nb-1

+b(2)S
nb-2

+……………b(nb)

H(s)= =

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

a(s) a(1)S
na-1

+a(2)S
na-2

+…………..a(na)

Where a,b are the vectors containing the denominator and numerator co-effients.

8. Calculate the magnitude of the frequency response in decibels (dB)

m=20*log10(abs(h))

9. Plot the magnitude response [magnitude in dB Vs normalized frequency (om/pi)]

10. Give relevant names to x and y axes and give an appropriate title for the plot.

11. Repeat the procedure for highpass, bandpass, bandstop filters.

12. Plot all the responses in a single figure window.[Make use of subplot()].

13. Repeat the program for Chebyshev type-I and Chebyshev type-II filters.

PROGRAM USING CODE COMPOSER STUDIO 3.3:

//iirfilters

#include<stdio.h>

#include<math.h>

int i,w,wc,c,N; float H[100];

float mul(float, int);

void main()

{

printf("\n enter order of filter ");

scanf("%d",&N);

printf("\n enter the cutoff freq ");

scanf("%d",&wc);

printf("\n enter the choice for IIR filter 1. LPF 2.HPF ");

scanf("%d",&c);

switch(c)

{

case 1:

for(w=0;w<100;w++)

{

H[w]=1/sqrt(1+mul((w/(float)wc),2*N));

printf("H[%d]=%f\n",w,H[w]);

}

break;

case 2:

for(w=0;w<=100;w++)

{

H[w]=1/sqrt(1+mul((float)wc/w,2*N));

printf("H[%d]=%f\n",w,H[w]);

}

break;

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

}

}

float mul(float a,int x)

{

for(i=0;i<x-1;i++)

a*=a;

return(a);

}

RESULT :

DSP Lab Manual Date:…………

Turbomachinery Institute of Technology & Sciences, Hyd-319

